martes, 27 de noviembre de 2012

ALARMA LUMINOSA

Esta alarma se activa cuando el haz de luz sobre la fotocelda es interrumpido (puedes usar la luz de una bombilla de linterna a la cual se le hará una fuente que permanezca encendida, esta puede ser de 3 voltios, no importa si es alterna o directa).
Cuando la fotocelda esta recibiendo luz, presenta baja resistencia, bloqueando así el voltaje positivo que le proporciona R4 al terminal 4 del IC 555, manteniendo al multivibrador desactivado y la bocina no suena, cuando la fotocelda deja de recibir luz,

su resistencia aumenta en fracción de segundos, lo que hace que le llegue el voltaje positivo al terminal antes mencionado, lo que activa la alarma.
NOTA: La fotocelda no debe de recibir otra luz que no sea la que le sirve para activarse.

LISTA DE COMPONENTES
Capacitores:
C1: .1 µF.
Resistores:
R1: 100K (pot)
R2: 1K
R3: 47K
R4: 100K
R5. 27 ohmios
R6: 220 ohmios
Semiconductores:
IC1: 555
TR1: 2N3055, C1060 ò C1226
D1: 1N4002
Otros:
Bocina de 8 á 16 ohmios


Alarma luminosa


jueves, 22 de noviembre de 2012

COMANDO FSCK

fsck es una utilidad unix que se utiliza ante alguna inconsistencia del sistema de archivos, para corregir los posibles errores que hubiese es necesario ejecutar fsck. Para verificar un sistema de archivos se aconseja hacerlo mientras este está desmontado. Generalmente se ejecuta automáticamente al inicio del sistema ante alguna anomalía.

fsck [-opciones] /dev/hdXXX (o sdXXX)

Opciones:

-a confirmar automáticamente. No recomendado.
-c comprobar bloques en el disco.
-f forzar el chequeo aunque todo parezca ok.
-v (verbose) despliega más información.
-r Modo interactivo. Espera nuestra respuesta.
-y asume yes de respuesta. 

Sirve cuando sale el error: 

fsck.ext3: Unable to resolve 'LABEL=/xxxxx'        [FAILED]

*** An error occurred during the file system check.
*** Dropping you to a shell; the system will reboot
*** when you leave the shell
Give root password for maintenance
(or type Control-D to continue):


IMPORTANTE: HACER EL USO DE ESTE COMANDO DESDE UN LIVE CD Y/O CON LAS UNIDADES A VERIFICAR DESMONTADAS. 

martes, 20 de noviembre de 2012

CONDENSADOR

File:Photo-SMDcapacitors.jpg

Un condensador (en inglés, capacitor, nombre por el cual se le conoce frecuentemente en el ámbito de la electrónica y otras ramas de la física aplicada), es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenar energía sustentando un campo eléctrico. Está formado por un par de superficies conductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total.
Aunque desde el punto de vista físico un condensador no almacena carga ni corriente eléctrica, sino simplemente energía mecánica latente; al ser introducido en un circuito se comporta en la práctica como un elemento "capaz" de almacenar la energía eléctrica que recibe durante el periodo de carga, la misma energía que cede después durante el periodo de descarga.

La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, estas adquieren una carga eléctrica de 1 culombio.
La capacidad de 1 faradio es mucho más grande que la de la mayoría de los condensadores, por lo que en la práctica se suele indicar la capacidad en micro- µF = 10-6, nano- nF = 10-9 o pico- pF = 10-12 -faradios. Los condensadores obtenidos a partir de supercondensadores (EDLC) son la excepción. Están hechos de carbón activado para conseguir una gran área relativa y tienen una separación molecular entre las "placas". Así se consiguen capacidades del orden de cientos o miles de faradios. Uno de estos condensadores se incorpora en el reloj Kinetic de Seiko, con una capacidad de 1/3 de Faradio, haciendo innecesaria la pila. También se está utilizando en los prototipos de automóviles eléctricos.
El valor de la capacidad de un condensador viene definido por la siguiente fórmula:
C=\frac{Q_1}{V_1-V_2} = \frac{Q_2}{V_2-V_1}
en donde:
C: Capacitancia
Q_1: Carga eléctrica almacenada en la placa 1.
V_1-V_2: Diferencia de potencial entre la placa 1 y la 2.
Nótese que en la definición de capacidad es indiferente que se considere la carga de la placa positiva o la de la negativa, ya que
Q_2 = C(V_2-V_1) = -C(V_1-V_2) = -Q_1\,
aunque por convenio se suele considerar la carga de la placa positiva.
En cuanto al aspecto constructivo, tanto la forma de las placas o armaduras como la naturaleza del material dieléctrico son sumamente variables. Existen condensadores formados por placas, usualmente de aluminio, separadas por aire, materiales cerámicos, mica, poliéster, papel o por una capa de óxido de aluminio obtenido por medio de la electrólisis.